Load packages

Load KEGG pathway human database

data("kegg_hsa_pathway", package = "metpath")
kegg_hsa_pathway
#> ---------Pathway source&version---------
#> KEGG & 2021-12-13 
#> -----------Pathway information------------
#> 345 pathways 
#> 334 pathways have genes 
#> 0 pathways have proteins 
#> 281 pathways have compounds 
#> Pathway class (top 10): Metabolism; Carbohydrate metabolism;Metabolism; Lipid metabolism 
#> 
get_pathway_class(kegg_hsa_pathway)
#> # A tibble: 43 × 2
#>    class                                                                       n
#>    <chr>                                                                   <int>
#>  1 Cellular Processes; Cell growth and death                                   8
#>  2 Cellular Processes; Cell motility                                           1
#>  3 Cellular Processes; Cellular community - eukaryotes                         5
#>  4 Cellular Processes; Transport and catabolism                                7
#>  5 Environmental Information Processing; Membrane transport                    1
#>  6 Environmental Information Processing; Signal transduction                  26
#>  7 Environmental Information Processing; Signaling molecules and interact…     5
#>  8 Genetic Information Processing; Folding, sorting and degradation            7
#>  9 Genetic Information Processing; Replication and repair                      7
#> 10 Genetic Information Processing; Transcription                               3
#> # … with 33 more rows

Pathway enrichment

We use the demo compound list from metpath.

data("query_id_kegg", package = "metpath")
query_id_kegg
#>  [1] "C00164" "C00099" "C00300" "C01026" "C00122" "C00037" "C05330" "C00097"
#>  [9] "C00079" "C00065" "C00188" "C00082" "C00183" "C00166" "C00163" "C00022"
#> [17] "C00213"

Remove the disease pathways:

#get the class of pathways
pathway_class = 
  metpath::pathway_class(kegg_hsa_pathway)

head(pathway_class)
#> $hsa00010
#> [1] "Metabolism; Carbohydrate metabolism"
#> 
#> $hsa00020
#> [1] "Metabolism; Carbohydrate metabolism"
#> 
#> $hsa00030
#> [1] "Metabolism; Carbohydrate metabolism"
#> 
#> $hsa00040
#> [1] "Metabolism; Carbohydrate metabolism"
#> 
#> $hsa00051
#> [1] "Metabolism; Carbohydrate metabolism"
#> 
#> $hsa00052
#> [1] "Metabolism; Carbohydrate metabolism"

remain_idx =
  pathway_class %>%
  unlist() %>%
  stringr::str_detect("Disease") %>%
  `!`() %>%
  which()

remain_idx
#>   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
#>  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
#>  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
#>  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
#>  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  90  91  92  93  94
#>  [91]  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112
#> [109] 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#> [127] 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#> [145] 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#> [163] 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#> [181] 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
#> [199] 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#> [217] 221 222 223 224 225 226 227 228 229 230 236 240 241 242 243 244 245 246
#> [235] 247 248 249 250 251 252 253 254

pathway_database =
  kegg_hsa_pathway[remain_idx]

pathway_database
#> ---------Pathway source&version---------
#> KEGG & 2021-12-13 
#> -----------Pathway information------------
#> 242 pathways 
#> 235 pathways have genes 
#> 0 pathways have proteins 
#> 191 pathways have compounds 
#> Pathway class (top 10): Metabolism; Carbohydrate metabolism;Metabolism; Lipid metabolism 
#> 
result = 
enrich_kegg(query_id = query_id_kegg, 
            query_type = "compound", 
            id_type = "KEGG",
            pathway_database = pathway_database, 
            p_cutoff = 0.05, 
            p_adjust_method = "BH", 
            threads = 3)

Check the result:

result
#> ---------Pathway database&version---------
#> KEGG & 2021-12-13 
#> -----------Enrichment result------------
#> 191 pathways are enriched 
#> 28 pathways p-values < 0.05 
#> Glycolysis / Gluconeogenesis;Citrate cycle (TCA cycle);Pentose phosphate pathway;Pentose and glucuronate interconversions;Fructose and mannose metabolism ... (only top 5 shows)
#> 

Plot to show pathway enrichment

enrich_bar_plot(object = result)

enrich_scatter_plot(object = result)

enrich_network(object = result)

Session information

sessionInfo()
#> R version 4.1.2 (2021-11-01)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur 10.16
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] forcats_0.5.1      stringr_1.4.0      dplyr_1.0.8        purrr_0.3.4       
#>  [5] readr_2.1.2        tidyr_1.2.0        tibble_3.1.6       ggplot2_3.3.5     
#>  [9] tidyverse_1.3.1    tinytools_0.9.1    massdataset_0.99.7 magrittr_2.0.2    
#> [13] masstools_0.99.3   metid_1.2.1        metpath_0.99.2    
#> 
#> loaded via a namespace (and not attached):
#>   [1] backports_1.4.1        circlize_0.4.14        readxl_1.3.1          
#>   [4] systemfonts_1.0.3      plyr_1.8.6             igraph_1.2.11         
#>   [7] lazyeval_0.2.2         BiocParallel_1.28.3    crosstalk_1.2.0       
#>  [10] listenv_0.8.0          leaflet_2.1.0          GenomeInfoDb_1.30.0   
#>  [13] digest_0.6.29          yulab.utils_0.0.4      foreach_1.5.2         
#>  [16] htmltools_0.5.2        viridis_0.6.2          fansi_1.0.2           
#>  [19] memoise_2.0.1          cluster_2.1.2          doParallel_1.0.17     
#>  [22] openxlsx_4.2.5         tzdb_0.2.0             limma_3.50.0          
#>  [25] ComplexHeatmap_2.10.0  globals_0.14.0         Biostrings_2.62.0     
#>  [28] graphlayouts_0.8.0     modelr_0.1.8           matrixStats_0.61.0    
#>  [31] pkgdown_2.0.2          colorspace_2.0-2       rvest_1.0.2           
#>  [34] ggrepel_0.9.1          haven_2.4.3            textshaping_0.3.6     
#>  [37] xfun_0.29              crayon_1.5.0           RCurl_1.98-1.5        
#>  [40] jsonlite_1.7.3         impute_1.68.0          iterators_1.0.14      
#>  [43] glue_1.6.1             polyclip_1.10-0        gtable_0.3.0          
#>  [46] zlibbioc_1.40.0        XVector_0.34.0         GetoptLong_1.0.5      
#>  [49] shape_1.4.6            BiocGenerics_0.40.0    scales_1.1.1          
#>  [52] vsn_3.62.0             DBI_1.1.2              Rcpp_1.0.8            
#>  [55] mzR_2.28.0             viridisLite_0.4.0      clue_0.3-60           
#>  [58] gridGraphics_0.5-1     preprocessCore_1.56.0  stats4_4.1.2          
#>  [61] MsCoreUtils_1.6.0      htmlwidgets_1.5.4      httr_1.4.2            
#>  [64] RColorBrewer_1.1-2     ellipsis_0.3.2         pkgconfig_2.0.3       
#>  [67] XML_3.99-0.8           farver_2.1.0           dbplyr_2.1.1          
#>  [70] sass_0.4.0             utf8_1.2.2             labeling_0.4.2        
#>  [73] ggplotify_0.1.0        tidyselect_1.1.1       rlang_1.0.1           
#>  [76] munsell_0.5.0          cellranger_1.1.0       tools_4.1.2           
#>  [79] cachem_1.0.6           cli_3.2.0              generics_0.1.2        
#>  [82] broom_0.7.12           evaluate_0.15          fastmap_1.1.0         
#>  [85] mzID_1.32.0            yaml_2.3.4             ragg_1.2.1            
#>  [88] knitr_1.37             fs_1.5.2               tidygraph_1.2.0       
#>  [91] zip_2.2.0              KEGGREST_1.34.0        ggraph_2.0.5          
#>  [94] ncdf4_1.19             pbapply_1.5-0          future_1.23.0         
#>  [97] xml2_1.3.3             compiler_4.1.2         rstudioapi_0.13       
#> [100] plotly_4.10.0          png_0.1-7              affyio_1.64.0         
#> [103] reprex_2.0.1           tweenr_1.0.2           bslib_0.3.1           
#> [106] stringi_1.7.6          highr_0.9              desc_1.4.0            
#> [109] MSnbase_2.20.4         lattice_0.20-45        ProtGenerics_1.26.0   
#> [112] ggsci_2.9              vctrs_0.3.8            pillar_1.7.0          
#> [115] lifecycle_1.0.1        furrr_0.2.3            BiocManager_1.30.16   
#> [118] GlobalOptions_0.1.2    jquerylib_0.1.4        MALDIquant_1.21       
#> [121] data.table_1.14.2      bitops_1.0-7           R6_2.5.1              
#> [124] pcaMethods_1.86.0      affy_1.72.0            gridExtra_2.3         
#> [127] IRanges_2.28.0         parallelly_1.30.0      codetools_0.2-18      
#> [130] MASS_7.3-55            assertthat_0.2.1       rjson_0.2.21          
#> [133] rprojroot_2.0.2        withr_2.4.3            S4Vectors_0.32.3      
#> [136] GenomeInfoDbData_1.2.7 parallel_4.1.2         hms_1.1.1             
#> [139] grid_4.1.2             rmarkdown_2.11         ggforce_0.3.3         
#> [142] lubridate_1.8.0        Biobase_2.54.0